Friday, December 9, 2011

286

286 = 2 x 11 x 13.

286 is the 11th tetrahedral number.


286 is the number of rooted trees with 9 vertices.

286 is 2121 in base 5 and 141 in base 15.

286 is the shorthand for the Intel 80286 microprocessor chip.

1 comment:

  1. Some analytical properties of the number 286
    1) K=Q quadratic field (+-d)^(1/2
    -Quadratic forms over quadratic imaginary field (N is the norm or conjugate)
    N(3+(-277)^(1/2)=3^2+277*1^2=286
    ->z^2-6z+286=0.==> Z=3+-(277)^(1/2)i
    N(15+(-61)^(1/2)=15^2+61*1^2=286
    ->z^2-30z+286=0.==> z=15+-(61)^(1/ 2)i
    -Quadratic forms over realquadratic field:
    N(17+(3)^(1/2)=17^2-3*1^2=286
    ->z^2-34z+286=0.==> z=17+-(3)^(1/2)
    N(27+(443)^(1/2)=27^2-443*1^2=286
    ->z^2-54Z+286=0. ==> z=27+-(443)^(1/2)
    http://hojamat.es/parra/cuadrbin.pdf
    2) Multiplicative group
    Let 17*19=323 in which a group is the 286. gcd(286.323)=1
    286=14(mód.17)->286=1(mód.19), where gcd (17.19)=1=17(9)+19(-8) If 17(9)(mod 323)=153 and 19(-8)* 14(mod 323)=133, then 286=17(9)*1 +19(-8)*14(mod 323) -> 153+133=286 and therefore f(286)=f(153)+f(133)
    http://hojamat.es/parra/funesp.pdf

    ReplyDelete